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ABSTRACT
The relative importance of various odd nitrogen (NO,) sources including lightning, aircraft, and
surface emissions on upper tropospheric total odd nitrogen is illustrated as a first application of
the three-dimensional Stretched-Grid University of Maryland/Goddard Chemical-Transport Model
(SG-GCTM). The SG-GCTM has been developed to look at the effect of localized sources
and/or small scale mixing processes on the large-scale or global chemical balance. For this
simulation, the stretched-grid was chosen so that its maximum resolution is located over eastern
North America and the North Atlantic; a region that includes most of the SONEX (the SASS
(Subsonic Assessment) Ozone and Nitrogen Oxides Experiment) flight paths. The SONEX period
(October-November 1997) is simulated by driving the SG-GCTM with assimilated data from the
GEOS-STRAT DAS (Goddard Earth Observing System-STRAT Data Assimilation System). A
new algorithm is used to parameterize the lightning flash rates that are needed to calculate
emissions of NO, by lightning. Model-calculated upper tropospheric NO, and NO, measurements
from the NASA DC-8 aircraft are compared. Spatial variations in NO, were well captured
especially with the stretched-grid run; however, model-calculated concentrations were often too
high in the upper troposphere, particularly during the first several flights. The lightning algorithm
does a reasonably good job; however, the use of emissions from observed lightning flashes
significantly improves the simulation on a few occasions, especially November 3, 1997, indicating
that significant uncertainty remains in parameterizing ligh.tning in CTMs.  Aircraft emissions
play a relatively minor role (~12%) in the upper tropospheric NO, budget averaged along SONEX
flight paths; however, the contribution of such emissions is as large as ~30% during portions of

some flights.
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1. Introduction

An understanding of the relative contributions of NO, (NO, = nitric oxide (NO) + nitrogen
dioxide (NO,)) source terms to the total odd nitrogen (NO,= NO + NO,+ NO,+ HNO, + HNO,
+ HO,NO, + 2N,O; + PAN + other organic nitrate + aerosol nitrate) distribution is essential
because of the major role played by NO, in the production of tropospheric O;. The most
important NO, source terms in the troposphere are fossil fuel combustion, soil microbial activity,
lightning emissions, biomass burning, and dissociation of nitrous oxide (N,O) in the stratosphere
followed by downward transport to the troposphere. The effect of each source term depends on
the magnitude of the source but also and perhaps more importantly on its location. Odd nitrogen,
emitted into the upper troposphere is longer lived than odd nitrogen emitted into the boundary
layer and is also more efficient at producing O, [Liu et al., 1987; Hauglustaine et al., 1994].
Therefore, upper tropospheric NO, emissions by lightning and aircraft play a disproportionate role
in the NO, budget. In addition, the iinponanca of lightning and aircraft emissions may increase
in the future since both air traffic [Boeing, 1996, Douglass, 1995] and global lightning flashes
[Williams, 1 992; Price and Rind, 1994a] are expected to increase over the next several decades.

Estimates of the relative importance of aircraft emissions on upper tropospheric NO, and
NO, amounts vary widely. Meijer et al. [1999] used a three-dimensional chemistry and transport
model (CTM) driven by ECMWF (European Centre for Medium-Range Weather Forecasts)
fields to study the impact of aircraft emissions on NO, amounts along four SONEX (the SASS
(Subsonic Assessment) Ozone and Nitrogen Oxides Experiment) and POLINAT II (Pollution
From Aircraft Emissions in the North Atlantic Flight Corridor (NAFC) II) flight tracks during

October 1997. They found that aircraft emissions were responsible for more than 50% of upper
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tropospheric NO, amounts along these flight paths. Lamarque et al. [1996] and Brasseur et al.
[1996] used the three-dimensional IMAGES (Intermediate Model of the Annual and Global
Evolution of Species) model to estimate the relative contribution of NO, source terms on upper
tropospheric NO, in the Northern Hemisphere (NH) midlatitudes. They found that aircraft
emissions contribute 20-35% of 200 hPa NO,; however, they cautioned that their estimates could
change significantly as more accurate information on global lightning emissions becomes
available. Flatgy and Hov [1996] studied the impact of aircraft NO, emissions on upper
tropospheric NO, and ozone over Europe and the North Atlantic using a three-dimensional
mesoscale CTM. They found that NO, concentrations west of Ireland doubled when aircraft
emissions were included. Hauglustaine et al. [1994] used a two-dimensiongl model and estimated
that aircraft emissions account for 40-50% of upper tropospheric NO, concentrations from 30°-
60°N. Kasibhatla [1993] studied the importance of aircraft emissions using the three-dimensional
GFDL (Geophysical Fluid Dynamics Laboratory) CTM. He estimated that aircraft emissions
were responsible ‘for 30-40% of upper tropospheric NO, amounts in the NH midlatitudes (30°-
60°N) during April.

The relative importance of aircraft emissions to upper tropospheric NO, concentrations
in and near the NAFC was studied during October and November 1997 as part of SONEX. Odd
nitrogen measurements were made on fourteen separate flights during this period. It is difficult
if not impossible to determine the contributions from each source using odd nitrogén
measurements alone. For example, since most NO, is emitted as NO, the ratio of NO/NO, is
large when emissions are fresh. Therefore, a high ratio at a remote marine location points to a

recent aircraft and/or lightning source. However, the ratio does not provide information on the
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importance of contributions from older lightning and/or aircraft emissions. For these reasons and
others, a combination of modeling and measurements are needed to ascertain the relative
importance of aircraft and lightning emissions. In this study, the relative importance of five
source terms: (1) non-aircraft fossil fuel combustion/soil microbial activity, (2) lightning
emissions, (3) biomass burning emissions, (4) aircraft emissions, and (35) the stratosphere will
_be evaluated along SONEX flight paths by solving the three-dimensional constituent continuity
equation for NO, using a CTM with a stretched-horizontal grid (ie., a grid where the spacing
between grid points is relatively small and uniform within a region of interest and stretches
gradually with latitude and longitude outside of this region) [e.g., Fox-Rabinovitz et al., 1997].
Stretched-grid simulations are useful for looking at the effect of small-scale mixing
processes on the larger or global scale chemical balance. An example is mixing in a strong
convective storm or after injection from a local source. A relatively high resolution is necessary
to simulate the dilution that occurs in the mixing region. A reasonable estimate of dilution 1s
needed because the net O, production rate varies nonlinearly with the NO, concentration
[Chatfield and Delany, 1990; Liu et al., 1987]. Another example is stratosphere-troposphere
exchange, a process which is driven by the large-scale circulation; however, the mixing associated
with it occurs at grid scales too small to be resolved explicitly by global models. Stretched-grid
simulations are also useful for interpreting measurements taken over limited areas such as those
from field studies or aircraft missions. In addition, stretched-gfid simulations are useful when
high resolution chemical emission data are available over only a portion of the globe.

A major advantage stretched-grid simulations have over nested-grid simulations (ie.,

simulations where a fine uniform resolution grid is embedded within a coarser uniform resolution
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grid) is the lack of lateral boundary conditions. A major advantage stretched-grid simulations
have over uniform grid high resolution calculations is that they have less memory and storage
requirements and may require fewer computations.

This study serves three main purposes. 1) It describes the development, testing, and
application to a scientific problem of the University of Maryland/Goddard Stretched-Grid
Chemical-Transport Model (SG-GCTM),VZ) it describes a new algorithm to parameterize NO,
emissions by lightning, and 3) it provides NO, source attribution information for SONEX. T
solution of the constituent continuity equation for NO, is described in section 2 with more
information on the advection algorithm in the appendix. The importance of various source
terms is highlighted in section 3 which compares model results along the SONEX flight paths
with NO, measurements. The representativeness of the flight paths, the performance of the
lightning algorithm, and loss of NO, by scavenging are discussed in section 4. The results are

summarized in section S.

2. The Chemical Transport Model

The constituent continuity equation for NO, is solved using the SG-GCTM. The SG-
GCTM has been developed for four primary reasons. 1) It allows us to take advantage of
chemical emission data that are at a higher resolution than the GEOS-DAS (Goddard Earth
Observing System Data Assimilation System) [Schubert et al., 1993, Bloom et al., 1996] fields
that have been used to drive the tropospheric version of the Goddard CTM (GCTM) [Allen et
al., 1996a; Allen et al., 1996b; Chin et al., 1998] in the past. 2) It allows us to focus the

resolution on an area where field experiments and aircraft missions have been conducted, 3)
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it allows us to test the SG-GCTM before driving it with stretched-grid fields from the stretched-
grid GEOS-DAS that is currently under development (M. Fox-Rabinovitz, personal
communication, 1998), and 4) it allows us to test the advection algorithm used in the SG-GCTM
before possibly coupling it with the stretched-grid GEOS-GCM for interactive chemistry/climate
forcing calculations [Fox-Rabinovitz et al., 1997, Fox-Rabinovitz, et al., 1999] .

The horizontal grid of the SG-GCTM is chosen by specifying a region of interest where
the resolution is highest, a “high” resolution for the region of interest, and a “coarse” resolution
for the opposite side of the globe. The location of horizontal grid points is then determined by
running a grid generator program [Fox-Rabinovitz et al., 1997]. The spacing between grid points
is uniform in the region of interest and increases gradually outside of this region with the
maximum spacing being located on the opposite side of the globe.

The region of interest for the stretched-grid SONEX NO, simulation is chosen to be 100°
to 50°W and 25° to 50°N (Figure 1). The grid spacing in the region of interest is 0.9375° in the
east-west and 0.75° in the north-south direction (0.9375° x 0.75°) and stretches to 2.5° x 2.0° on
the opposite side of the world. The region of interest was chosen to include the region of *high
resolution” chemical emission data over eastern North America but extends far enough east to
also encompass many of the SONEX flight paths. The “coarse” resolution was chosen to match
the resolution of the driving GEOS-DAS. The resolution changes slowly enough that even the
easternmost SONEX flights were in an area of relatively fine resolution.

The model has 26 sigma layers (see Table 1) with the lowest 23 being chosen to match
the lowest 23 layers of the 46 layer (2.5° x 2.0°) GEOS-STRAT DAS that was used to support

the STRAT (Stratospheric TRacers of Atmospheric Transport) and SONEX missions.
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Output from the GEOS-STRAT DAS is used to drive the SG-GCTM in an off-line mode.

The GEOS-STRAT fields used to solve the continuity equation for NO, are the « and v
components of the wind, the surface pressure, the temperature, the three-hour averaged planetary
boundary layer depth, and the six-hour averaged cloud mass flux and detrainment. Since the
uppermost three layers of the SG-GCTM do not match GEOS-STRAT layers, the values of
fields on these layers are obtained by mapping the GEOS-STRAT fields ;Jnto the SG-GCTM
layers (S. J. Lin, personal communication, 1998). The fields on all layers are interpolated onto
the stretched-horizontal grid before use. In the future, we will get our fields from the stretched-
grid version of the GEOS-DAS, and this step will be unnecessary. Turbulent and convective
mixing are parameterized using algorithms described in Allen et al. [1996a, 1996b].

The NO, simulation was initialized 00 UT July 1, 1997. A 2.5° x 2.0° uniform grid
simulation was run through 18 UT September 30, 1997. A stretched-grid simulation was
initialized using output from the uniform grid simulation at 18 UT September 30, 1997. Both
the uniform and stretched-grid simulations were run through 18 UT November 14, 1997.

2.1. Stretched-grid advection scheme

The mixing ratio change due to advection was calculated by modifying Lin and Rood'’s
[1996; LR96 hereafter] multidimensional and semi-Lagrangian extension of the piecewise
parabolic method (PPM) [Colella and Woodward, 1984] for use on a non-uniform grid. This
is the first application of a senﬁ~Lagrmgim scheme on a non-uniform grid. A semi-Lagrangian
approach is appealing for stretched-grid calculations because the time step needed to maintain
stability with Eulerian schemes is limited by the resolution in the high resolution area. The

advantage of semi-Lagrangian schemes is that there is no restriction on the time step. Therefore,
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a time step appropriate for the physical processes being simulated can be chosen. We chose a
time step of twelve minutes for this simulation. The advection algorithm is described in some
detail in the appendix. The major changes from LR96 are:
1. The semi-Lagrangian extension is invoked automatically in both the north-south and east-west
directions whenever the CFL (Courant-Friedrichs-Levy) condition is violated. LR96 automatically
invoke the semi-Lagrangian extension in ‘the east-west direction at high latitudes. 2. The second
order PPM of Colella and Woodward [1984] is used for horizontal advection. LR96 use a fourth
order version of the PPM. 3. The calculation of the Courant number at grid points where the
CFL condition is violated is more complex because of the nonuniform grid. 4. The PPM is used
to calculate the “fractional flux” for the semi-Lagrangian extension (see appendix). LR96 used
van Leer’s algorithm (van Leer, 1979] for this extension. This change was for convenience only
and is not expected to increase the accuracy of the overall approximation.
2.2 Specification of NO, Sources and Sinks

Five different sources of NO, are included in the simulation. They are fossil fuel/soil
NO,, lightning NO,, biomass burning N O,, aircraft NO,, and stratospheric NO,. The contribution
to total NO, of each of the five source is calculated separately. The algorithms used to spécify
each of the five sources are now described.
2.2.1. Fossil fuel/soil NO,. An emission inventory for fossil fuel/soil emissions of NO, was
obtained by merging NO, emissions from the OTAG (Ozone Transport Assessment Group)
[OTAG, 1997a; OTAG, 1997b] and GEIA (Global Emissions Inventory Activities) [Benkovitz et
al., 1996; Yienger and Levy, 1995] inventories. The high resolution (0.5° x 0.33°) OTAG

inventory is used over the eastern United States (99°-67°W, 26°-47°N) while the 1° x 1° GEIA
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inventory is used over the remainder of the globe. The OTAG inventory includes both soil and
fossil fuel emissions and is divided into high-level point and area sources. The OTAG inventory
used in this simulation was developed for July 7-18, 1995. The average daily emissions for July
7-13, 1995 are used in this simulation. The OTAG emissions at each grid point are adjusted to
ensure that the total global emissio‘n of the combined OTAG/GEIA inventory matches the total
global emission of the GEIA inventory for thatvmonth. This adjustment is necessary because the
magnitude of the OTAG source is appropriate for July 7-13, 1995 while July-November, 1997
is simulated. Emissions by high-level point sources are put into the second model layer, while
emissions by a;rea sources are put into the lowest model layer.

Separate GEIA inventories are used for fossil fuel combustion [Benkovitz et al., 1996] and
soil-biogenic emissions [Yienger and Levy, 1995]. The fossil fuel inventory is divided into high
(>100m) and low level emissions. The fossil fuel inventory is available for each season, while
the soil-biogenic inventory is available monthly. Emissions by high-level sources are put into
the second model layer, while emissions by low level sources and the soil are put into the lowest
model layer.

2.2.2. Lightning NO,. NO, is produced via the Zel’dovich mechanism [Zel’dovich and Raizer,
1966] during lightning flashes. The mass of NO, produced per flash is related to the energy of
each flash. Y.-J. Wang et al. [1998] have reported that the NO, production per unit energy is
a nonlinear function of flash energy. However, because we do not have global information on
flash energies we follow Price et al. [1997a] and assume that the NO, production per unit
energy is constant. Therefore, the total mass of nitrogen (N) in NO produced per second (G) is

given by
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G = (feg *LF*Eqg + (1-fg)*LF*E,-)*P*CONV, (1)
where f. is the fraction of total flashes that are cloud-to-ground, LF is the total flash frequency
(flashes s), Ecs is the mean energy of a cloud-to-ground flash (Joules(J)), Ec 1s the energy of
an intracloud flash (J), P is the mean NO production rate per unit energy (molecules NO/J), and
CONV is a conversion factor equal to the molecular weight of N (14 g/mole) divided by
Avogadro’s number (6.02X10% molecules/mole).

Following Price et al. [1997a], P is assumed to equal 10 x 10'® molecules NO/J, E is
assumed to be 6.7 x 10° J, and E is assumed to equal 0.1* E.;.  However, estimates of P
range from 5-15 x 10'® molecules [Price et al., 1997b], while estimates of the ratio of Eto Eg
range from 0.1 to 0.33 or more [Price et al., 1997a; Gallardo and Co'oray, 1996]. The fraction
of total flashes that are cloud-to-ground (f.;) can be related to the thickness of the cloud above

the freezing level (cold-cloud thickness) [Price and Rind, 1993],

foq = 0. az < 5.5,
fog = L/[(Aaz*+Baz’+Caz’+Daz+E)+1] 5.5 < az < 14, (2)
foq = 0.02 az > 14,

where A = 0.021, B = -0.648, C = 7.493, D = -36.54, E = 63.09, and az is the depth (km) of the
cloud above the freezing level. In the SG-GCTM, the cloud top is assumed to equal the pressure
at the top edge of the uppermost layer that has nonzero convective mass flux across its bottom
edge. The cold-cloud thickm;.ss (az) is calculated by starting with the top cloud layer and
summing the depths of each layer below it until a layer is reached for which the T > 273K.
The total flash frequency (LF) was not calculated during the GEOS-STRAT assimilation.

Therefore, a parameterization in the CTM is necessary. Price and Rind [1992] provide a method
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of estimating tlash rates using cloud top height. When we applied this method for the SONEX
period we found that it severely underpredicted cloud-to-ground flashes over the Atlantic Ocean.
The Price and Rind marine flash rate formula did not appear to be valid for a region of relatively
strong instability such as over the warm waters of the Gulf Stream. This finding is consistent with
the results of Gallardo and Rodhe [1997]. They found that their model-calculated distribution
of total nitraté in the remote Pacific improved when they increased their marine lightning flash
rates significantly from values obtained using the Price and Rind marine formulation. In
addition, because of the algorithm used in the SG-GCTM to calculate cloud top heights, the
model cloud top heights were bunched about the mean height of each model layer. Because of
this, for a given cloud top height a wide range of observed flash rates occurred, making cloud
top height from the model a rather poor predictor of flash rate. Therefore, we have developed
a preliminary \;ersion of an alternative method for estimating the flash rate using six-hour
averaged convective mass fluxes from the GEOS-STRAT assimilation. The magnitude of these
fluxes is related to the intensity of deep convection. Since the intensity of deep convection (e.g.,
upward vertical velocity) is related to the lightning flash rate [MacGorman and Rust, 1998; Baker
et al., 1995; Pickering et al., 1998], an empirical relationship between the mass flux and the flash
frequency can be determined and used to parameterize the flash frequency. Cloud-to-ground
lightning flash rates for 10°-70° N and 180°-0° W on a 1° x 1° grid are currently available
through the National Lightning Detection and Long Range Flash Networks (NLDN/LRF)
{Wacker and Orville, 1999; Cramer and Cummins, 1998]. The actual cloud-to-ground flash rate
is believed to be higher because the network is not 100% efficient in detecting lightning flash

rates. Because of this, the measured flash rates are adjusted by dividing by the detection
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efficiency before being compared to the GEOS-STRAT mass fluxes. The detection efficiency
was estimated using a 4™ order polynomial determined with the constraints that the efficiency
equals 0.9 over the United States of America (US), 0.6 at a distance of 1000 km from the US,
0.3 at a distance of 2000 km from the US, and 0.15 at distances greater than 3000 km from the
US coast (5. Goodman, personal communication, 1997). Diurnal variations in detection efficiency
were not considered. Since the detection efficiency is imprecise (the above values are best case
estimates), only grid points relatively close to the US (10°-60°N and 120°-60°W) were used to
determine the empirical relationship. The adjusted NLDN/LRF flash rates are averaged over the
same six hour periods as the mass fluxes and aggregated into the 2.5° x 2.0° GEOS-STRAT grid
boxes. The adjusted flash rates for November 1-9, 1997 were then sorted by magnitude.
Similarly, the GEOS-STRAT mass fluxes at 0.44 sigma (=440 hPa) for the same period were
sorted by magnitude. The choice of 0.44 sigma limits lightning production to deep convective
clouds (ie., clouds with a cloud top of s 440 hPa). The sorted NLDN/LRF flash frequencies after
adjusting for detection efficiency are plotted versus the sorted 0.44 sigma mass fluxes in Figure
2. A fourth order polynomial was fit to the sorted fields (after converting to per minute)
assuming the mass flux was the independent variable and the lightning flash rate the dependent
variable. The resulting cloud-to-ground flash rate becomes:

LFc; = a + bM +cM? +dM’ +eM* (3)
where a = -0.7133, b = 2.3450, ¢ = -2.5104, d = 0.9568, e =-0.0564, LF; is the cloud-to-
ground flash rate (flashes min" ) within the 2.5° x 2.0° grid box, and M is the cloud mass flux
(kg m?min™). The polynomial gives unrealistic flash rates for M 210 kg m?min"'. Therefore,

it is not appropriate for use with a mesoscale model where larger mass fluxes are possible;
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GEOS-STRAT mass fluxes rarely exceed 6 kg m”min"'. Separate fits were initially tried for
land and water points; however, the fits were similar so land and water points were combined.
The number of grid points with nonzero mass fluxes exceeded the number of grid points with
nonzero observed flash rates. After sorting, it was found that mass fluxes less than 0.55 kg m™
min" had flash rates of zero associated with them. Therefore, the lightning flash rate for mass
fluxes less than 0.55 kg m” min" was automatically set to zero. The resulting cloud-to-ground
flash rate (LFg) 1s appropriate for a 2.5° x 2.0° grid box at 30°N latitude. The total flash rate
in a grid box (LF) can be obtained by multiplying LF; by the area of the grid box (axay) and
dividing by the cloud-to-ground fraction (f-;) and the area (A) of a 2.5° x 2.0° grid box at 30°
latitude (=5.35X10"° m*). Mathematically,

LF = axayLF.g /(fcgA), (4)
where LF; and f.; are the cloud-to-ground flash rate (Equation 3) and the cloud-to-ground
fraction (Equation 2), respectively, after interpolating onto the stretched grid. The interpolation
of f-; onto the stretched-grid can result in extremely small values of f.; which can in turn
produce unrealistically large amounts of intracloud lightning. Because of this, the flash rate is
set to O for fo; < 0.01. The NO production rate is now found using equation 1.

Stretched-grid and uniform-grid experiments were also run where the parameterized flash
rates (LF.;) between 20°-60°N and 130°-50°W for October 9 through November 12 were
replaced by the NLDN/LRF flash rates after adfusting for efficiency. A difficulty with this
simulation is that the observed flashes and GEOS-STRAT deep convection are not always
aligned. In other words, lightning flashes may occur at grid points where deep convection did

not occur in the model, and the cloud top pressure is undefined. For these simulations, the cloud
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top pressure in regions where observed flashes are used was assumed to equal the pressure at the
top of the uppermost layer entirely within the troposphere. The tropopause pressure (Pop) 1
defined to be the largest pressure (P< 500 hPa) at which the GEOS-STRAT Ertel potential vorticity
[Ertel, 1942] equals 2.5 x 10° K m* kg 5. If the resulting tropopause pressure is less than the
pressure at the 380 K surface, the pressure at the 380 K surface is used as the tropopause pressure
(S. Steenrod, personal communication, 1998). This cloud top pressure is then used to calculate
sz in the formula for f.; (Formula 2).

The final step in the lightning NO, parameterization is to determine what fraction of the
total emissions to put into each layer. This step is also important. Lamarque et al. [1996] found
that the relative contribution of lightning NO, to the NO, budget changed by 10-20% when they
changed the vertical distribution of lightning NO, in the IMAGES CTM. Pickering et al. [1998]
constructed vertical profiles of lightning NO, emissions for tropical continental, midlatitude
continental, and tropical marine conditions. The profiles of Pickering et al. [1998] need to be
scaled to the heights of the clouds in the SG-GCTM. We adjusted the emission heights using
the cloud top height at each SG-GCTM grid point and then interpolated the emissions onto the
heights of the SG-GCTM layers. The fractions were then adjusted in order to ensure that the sum
of the fractional emissions into all the model layers equals one. The tropical continental (marine)
profile was used in the SG-GCTM at all model grid points over land (ocean) within 30° of the
equator. The midlatitude continental profile was used at all SG-GCTM grid points (land or
ocean) poleward of 30°.

2.2.3. Biomass burning NO,. NO, emissions from tropical and sub-tropical biomasé burning are

calculated using monthly 5° x 5° data sets of total biomass burned from deforestation and
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shifting cultivation, savanna burning, fuelwood burning, and agricultural residue burning [Hao
et al., 1994]. Burning from deforestation, savannas, fuelwood, and agricultural residues are
assumed to emit 0.0025, 0.0020, 0.0015, and 0.0010 tons of nitrogen (N) per ton of biomass
burned respectively [Dignon and Penner, 1991]. NO, emissions from midlatitude and high latitude
biomass burning are not included in the simulation. All emissions by biomass burning are put
into the lowest layer of the model.
2.24. Aircraft NO,. Monthly average aircraft NO, emissions based on 1992 scheduled air traffic
have been generated on a 1° longitude by 1° latitude by 1 km pressure altitude grid by Baughcum
et al. [1996]. NO, emissions from this twenty-one layer inventory were used in this simulation.
The emissions from each of the twenty-one layers were put into the appropriate SG-GCTM layer
by comparing the emission pressure from the inventory with the pressures at the edges of each
SG-GCTM layer. The SG-GCTM surface pressure was assumed to equal 1000 hPa during this
comparison. The resulting emission distribution was interpolated onto the SG-GCTM grid.
The Baughcum et al. [1992] inventory did not include diurnal variability. However,
flights in the Organized Track System (OTS) within the North Atlantic (defined here to be 10°-
60°W, 45°-60°N) are not uniformly distributed throughout the day [Schlager et al., 1997]. Most
departures from North America occur in the evening (23 UT-4 UT) and reach Europe the
following morning (5 UT-8 UT) while most departures from Europe occur in the early afternoon
(12 UT-15 UT) and reach North America in the early-mid afternoon (16 QT-IS UT). This
diurnal variability was added to aircraft emissions in the NAEC (see Table 2).
2.2.5. Stratospheric NO,. The stratospheric NO, simulation was initialized using 00 UT July 1,

1997 output from a calculation in support of the POLARIS (Photochemistry of Ozone Loss in
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the Arctic Region in Summer) mission using the full stratospheric chemistry version of the
GCTM [Douglass et al., 1997, 1999]. The 2.5° x 2.0° “POLARIS” simulation was initialized
March 20, 1997 and run on 28 vertical layers. The 28 layer output was interpolated onto the 2.5°
by 2.0° by 26 layer grid. The NO, mixing ratio was set to zero at all grid points where the
pressure exceeded the tropopause pressure. The initialization with model output as opposed to
climatological measurements minimized the amount of cross-tropopause flow that occurred z;s the
NO, simulation spun up.

The primary production mechanism for NO, is dissociation of N,O in the stratosphere.
This production is parameterized using production coefficients from the Goddard two-dimensional
model [Jackman et al., 1996].

When interpreting the relative importance of NO, source terms, it is important to
remember that stratospheric NO, in this simulation includes both NO, that was in the stratosphere
as of 00 UT July 1, 1997 and NO, that was produced after that date by dissociation of N,O in
the stratosphere. Therefore, stratospheric NO, also includes NO, that originated via surface
sources, lightning emissions, or aircraft emissions prior to July 1 and was transported to the
stratosphere.

2.2.6. Dry Deposition and Wet Scavenging. Loss by dry deposition and wet scavenging of NO,
are simulated as a first order loss process dependent on altitude [Logan et al., 1981] and surface
type (land, water, ice). The resulting lifetime-s as a function of altitude and underlying surface
(land, water, or ice) are shown in Table 3. The NO, lifetimes have been adjusted in the mid-and-

upper troposphere to account for loss due to ice particle scavenging and settling [Lawrence and

Crutzen, 1998]. Land (ocean) points poleward of 50°(70°) are assumed to be ice covered if the
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temperature in the lowest model layer is less than 268K.

2.2.7. Total emissions. The total global emissions (expressed as an annual mean) from
each NO, source for the last six weeks (October 1-November 14, 1997) of the simulation are
shown in Table 4. The fossil fuel/soil and biomass burning terms dominate although their
influence 1s mitigated by the fact that they are subjected to larger loss processes since they are
emitted into the lowest tw>0 layers of the model. The magnitude of the October-November
lightning source (3.6 Tg N/yr) is within the range of recent annual estimates of 3-5 Tg N/yr by

Levy et al. [1996] but lower than the 12-13 Tg N/yr estimated by Price et al. [1997a; 1997b].

3. Model simulation results

Four separate experiments were run for the SONEX period as listed below:

UGPL: Uniform 2.5° x 2.0° grid with parameterized lightning

SGPL: Stretched grid with parameterized lightning

UGOL: Uniform 2.5° x 2.0° grid with observed lightning for 20°-60°N and 130°-50°W

SGOL: Stre.tched grid with observed lightning for 20°-60°N and 130°-50°W
The results of these simulations are discussed in terms of several specific SONEX flights of the
NASA DC-8 aircraft. Model output was saved every six hours and was then sampled at the
latitudes, longitudes, and altitudes of 60-s averaged NO, measurements along the DC-8 flight
tracks. The sampled data from the model were interpolated linearly to the times of specific
observations. We discuss results for flights from the three bases of operation during SONEX
(Shannon, Ireland; the Azores; and Bangor, Maine). Flight paths for the flights discussed in this

paper are shown in Figure 3.
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3.1. Flight 7 - October 23, 1997

This flight of the DC-8 was designed to characterize the air in the Organized Track
System (OTS) of the NAFC after the early morning peak in the eastbound air traffic. The flight
was conducted to the north of Ireland and cross-track flight legs were flown at altitudes ranging
from 7.6 to 11.2 km (see Figure 3). Figure 4a,b shows the measured NO,, as well as the
simulated NO, from the five different sources for Experiments UGOL and SGOL. The
contribution to NO, from aircraft is the greatest at the two highest altitudes flown by the DC-8,
up to ~125 pptv or ~25-30% of the total NO, in Experiment SGOL. Averaged over the entire
flight, the model estimate of the aircraft contribution was 15%. However, there is uncertainty
associated with this estimate because it was obtained using monthly averaged aircraft emissions
apportioned according to estimated diurnal variation of air traffic in the NAFC. A more detailed
day-by-day inventory for SONEX that includes emissions from the specific aircraft flying in the
corridor will be available in the future.

We note that a considerable high bias exists in the model results throughout much of this
flight, with the exception of two intervals during the higher altitude portion of the flight. The
bias is somewhat less in Experiment SGOL (stretched-grid) than for Experiment UGOL. The
high bias was also noted particularly on the other flights from Shannon and on the transit flights
to Shannon from Moffett Field, CA. We speculate that this results from the use of a first order
loss process for NO, rather than episodic removal in individual precipitation sysrtems including
scavenging in convective updrafts (see section 4.3). Such removal mechanisms may reduce the
upper tropospheric contribution of fossil fuel and soil NO,. If this is the reason for the high bias,

the aircraft contribution to NO, on this flight may have been greater than ~25-30% at the highest
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altitudes and 15% averaged over the entire flight. The model results do show a substantial fossil
fuel/soil source contribution on this flight. In addition, trajectory-based convective influence
calculations using dynamical fields from the GEOS-STRAT DAS [Thompson et al., this issue]
show some exposure of the air sampled on this flight to convection over the previous 5 days.

Analyses of combinations of tracers and probability distributions of the observed data
showed that relatively fresh aircraft plumes accounted for 6-12% of the NO, measured on this
flight [A. M. Thompson, personal communication, 1999]. Analysis of the data alone cannot
provide an estimate of the total aircraft contribution because no unique tracer of aircraft emissions
exists that would allow identification of the more aged emissions. Therefore, our model
simulation aids in the interpretation of this flight and suggests that the total aircraft contribution
to NO, to be perhaps at least twice the contribution from the identified fresh emissions.

3.2. Flight 9 - October 28, 1997

Figure 5a,b shows model results (Experiments SGPL and UGOL) compared with
observations for the flight from Shannon to the Azores (see Figure 3). The model (Experiment
SGPL) produces a broad peak from 1300 to 1445 UT that is of the same magnitude as the two
observed peaks at 1345 and 1415 UT. The model suggests a substantial stratospheric contribution
to the observed NO, in the first peak. Experiment SGPL also shows an enhanced lightning
contribution near the time of the second observed peak. In contrast, Experiment UGOL (uniform
grid, observed ﬁashes) did not produce a peak as high as the two observed maxima and it did not
overlap them in time as well as Experiment SGPL. Therefore, our lightning flash
parameterization appears to yield better results than use of the observed flashes in this case. This

result may be due to large uncertainty in the detection efficiency of flashes over the ocean.
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Experiment SGPL well simulates the minimum observed values between 1445 and 1545
UT and the maximum from 1600 to 1645 UT. During both of these features the model suggests
that the NO, is largely from the fossil fuel and soil source, but with a 34% lightning contribution
in the peak. In Experiment UGOL the model had a high bias during these periods and contained
a larger lightning contribution. The model in all four experiments overestimated the observed
mixing ratios during the >1645-1730 UT minimum and 1730-1815 UT maximum, which again
were dominated by fossil fuel and soil emission along with a significant lightning contribution.
The model nearly perfectly captured the time and location of this minimum and maximum;
however, the final observed peak at 1845 UT was missed by the model in all four experiments.
Substantial convective influence and lightning exposure at points along this flight are suggested
by the trajectory-based products described by Thompson et al. [this issue], in agreement with our
NO, simulations.
3.3. Flight 10 - October 29, 1997

Figure 6a,b displays the model results (Experiments SGPL and UGOL) and observed NO,
for the October 29 flight to the south of the Azores (see Figure 3). A cut-off low existed in the
flow near the Azores, and both the observations and the model show NO, peaks near the
beginning of the flight (~1200 UT). The model shows that, as expected, stratospheric NO, made
a large contribution to this peak. Experiment SGPL (stretched grid) performed better in capturing
the structure of this peak, while the uniform grid model (Experiment UGOL) better simulated the
magnitude of the peak. Overall Experiment SGPL better simulated the magnitude and structure
of the mixing ratios between 1230 and 1630 UT. During this time period significant lightning

contributions were evident (up to ~50% of the total NO, using the observed flashes). The



22

enhancements in the lightning contribution were stronger in Experiment UGOL than in
Experiment SGPL. The stronger lightning signal in the run using observed flashes better
explained the observed NO, maximum between 1400 and 1500 UT, but also produced peaks not
seen in the observed NO, at 1300 and 1345 UT.

The model did not perform particularly well for the return to the Azores at the end of the
flight. A peak in the NO, observations (averaged to 60 s intervals) reaching to nearly 2 ppbv at
~1700 UT was followed by an approximately 1-hr period of mixing ratios of ~1 ppbv. The
model produced a lightning peak at ~1645 UT, which was the strongest in Experiment UGOL,
and a large stratospheric peak from 1715 UT to the end of the cruise altitude part of the flight.
It is possible that the model lightning peak was offset slightly in time and space and corresponds
to the nearly 2 ppbv maximum. Experiment SGOL (stretched grid, observed flashes) produced
a peak even more closely reaching this observed maximum. It is likely that the sustained 1 ppbv
period indicates reentry into the cut-off low near the Azores. All of the model experiments
overestimate the stratospheric contribution during this period.

The stretched-grid simulations are also useful for determining the origin of lightning NO,
For example, a large amount of the lightning NO, observed on October 29th near the Azores
appears to have been emitted over the southeastern United States during thunderstorms on
October 26™ and 27" (see Figu'res 7a-d). Model-calculated lightning NO, concentrations from
experiment SGOL at 250 hPa exceeded 2.5 ppbv over central Florida on October 27®. The
lightning NO, was transported across the Atlantic and had nearly reached the October 29" flight
track as of 12 UT October 29"

Analyses using trajectory-based model products that use winds and temperature from the
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GEOS-STRAT assimilation are described in Thompson et al. [this issue]. The 29 October 1997
flight is one of two discussed in detail in that paper. The RDF (reverse-domain fill) plot of
potential vorticity at 330 K put the cut‘-off low over the Azores, where high NO, was encountered
on the takeoff and landing parts of the flight. Several different approaches were tried with
convective and lightning in:fluence. These show maxima at th¢ location of the high NO, at 1400-
1500 hours (Figure 6a). The back-trajectory (product BT in Thompson et al. [this issue]) from
1400-1500 hour originates from convective activity and lightning [Pfister et al., this 1ssue] over
the northeast United States and maritime Canada. Tracers such as CO, HC etc. are consistent
with the trajectory implications. However, this result is not consistent with our lightning NO,
simulation, which shows lightning over the southeastern United States as the primary contributor.
Both approaches use the same wind data; however, the trajectory-based products result from a
Lagrangian technique using the isentropic assumption, while our NO, simulation results from a
largely Eulerian technique using kinematically-computed vertical velocities.

The observed peak in NO, at 1700 hours (Figure 6a) which is also suggested by the
convective and lightning exposure plots [Thompson ét al., this issue] is rr.10re ambiguous when
one looks at the tracers. Davis et al. [this issue] argue for aircraft influence which is supported
by a maximum in aircraft exposure [Thompson et al., this issue]. Our NO, simulations
(particularly the SGOL Experiment) however, suggest a lightning source for the 1700 UT peak.

3.4. Flight 12 - November 3, 1997

The first SONEX flight from Bangor, Maine was conducted primarily along the coast of
Newfoundland and Labrador but north of the OTS westbound air traffic (see Figure 3). Figure

8a,b shows model (Experiments UGOL and SGOL) and observed NO, for this flight. These
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experiments (using the observed flashes) came much closer to matching the observed NO, than
did the parameterized flash runs (Experiments UGPL and SGPL) for this flight. Experiment
SGOL (stretched grid) performed better than Experiment UGOL for the early part of the flight
(1330 - 1515 UT). During this period a mix of all of the sources appears to have contributed to
the total NOy.' The observed peak at 1445 UT corresponds to a maximum in the fossil fuel and .
. soil source contribution. Between 1515 and 1930 UT Experiment UGOL produced NO, mixing
ratios that better agreed with the peak observed values, but the coarser-grid simulation results lack
the large variability seen in the observations. Lightning and fossil fuel sources dominated the
large peaks occurring at ~1600 and ~1700 UT. Pickering et al. [this issue] show that these
maxima may represent outflow from convection approximately 1.5 days upstream over the
southeastern United States. Lightning was the predominant source for the 1830-1930 UT peak,
which likely resulted from marine convection not far south of the flight region [Pickering et al.,
this issue]. The Experiment UGOL and SGOL results show up to ~60-65% of the NO, may be
from lightning during this period. The trajectory-based lightning exposure and convective
influence products {Thompson et al., this issue] show that air parcels in the region of the 1830-
1930 UT Peak (central Newfoundland to northern Nova Scotia) passed through grid cells
containing lightning (some parcels up to ~100 flashes). The transport time to the most recent
convection for these parcels ranged from 0-8 hours to 24-32 hours. During the remainder of the
flight the stretched grid simulation (Experiment SGOL) more closely matched the observed NO,.

3.5. Flight 14 - November 9, 1997

The DC-8 sampled the OTS along the Newfoundland coast soon after the peak of the

westbound air traffic on this date (see Figure 3). Figure 9 presents the observations and the model
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results for Experiment SGPL (stretched grid, parameterized flashes). All of the simulations were
much lower than the observations for almost the entire flight, and the simulations using observed
flashes showed even greater underestimates. Flight legs at five altitudes were flown across the
OTS. The largest aircraft contribution to NO, (~20%) is seen at the highest altitude (11.3 km)
in Experiment SGPL. Pickering et al. [this issue] and Jeker et al. [this issue] show that extensive
marine convection containing frequent lightning occurred upstream on this day, suggesting a
lightning source for much of the enhanced NO, detected on this flight. The parameterized flash
simulations showed the largest lightning contributions to total NO, (up to 60% for the 1845 - 1900
UT maximum); however, all of our model experiments appear to underestimate the downstream
effects of these lightning flashes.

Several factors may contribute to the underestimation. The lightning flashes downwind
of the November 9™ NO, peaks appear to have occurred ~500-1000 km from the coast. The
efficiencies we used to calculate lightning emissions were theoretical best case scenarios that based
on very recent experimental data appear to have been much too optimistic. Cramer and Cummins
[1998] estimated lightning flash rates over Kansas and Oklahoma using local sensors and
compared the estimates to flash rates obtained using only sensors on the east and west coasts on
the United States. The efficiency at ~1400 km was only ~15% during the night and ~5% during
the day. Experiment SGOL was rerun for November 7-11th using detection efficiencies based on
the recent experimental data. The overall contribution of lightning emissions along the November
9" flight track increased from 42 to 62%; however, total NOy amounts were still much lower than
observed and never exceeded 1.5 ppbv. Measured NO, concentrations exceeded 2 ppbv during

a significant portion of the flight path and were as high as 3.5 ppbv. It is possible that the
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intracloud flashes upstream of this flight were more energetic than we assumed in our algorithm.
Our assumption that intracioud flashes have one-tenth of the energy of cloud-to-ground flashes is
on the low end of values used in recent simulations. For example, Wang et al. [1998] assumed
intracloud flashes have one-third the energy of cloud-to-ground flashes while Gallardo and Cooray
[1997] estimated the ratio to be closer to one-to-one. In addition, recent field observations and
cloud-scale modeling for a Colorado storm (DeCaria et al., manuscript in preparation) suggest a
ratio of energies of approximately one half. Use of this ratio would bring our model-estimated
NO, for this case closer to the observations.

This is the second case study featured in the Thompson et al. [this issue] and Pfister et al.
[this issue] discussions of trajectory-based model products. Comparison of exposure plots
confirms the lightning and convective influence which appeared throughout most of the flight with
varying degrees of continental and maritime signatures in the tracers. The lightning exposure
products show the highest values on the 325 K isentropic surface to be between 62°W and 70°W
(the longitudes of the transit legs outbound and inbound to Bangor). This coincides with high
NO, (Figure 9); NO/NO, ratios were observed at 0.4-0.7 during these periods. The northern and
southern ends of the cross-track section are prominent in the lightning exposure product at 331
K; the southern end is the location of the highest NO, in the flight Between 1830 and 1930 UT,
where our NO, simulation shows up to 60% from lightning. Transport time was less than 24
hours from the most recent convectibn for almost all air parcels showing convective influence.
Many air parcels (particularly those at 325 K) had only been transported 0-8 hours from
convection. Aircraft influence appears to be present as sharp spikes in the 1-s NO, time series

(Pickering et al., this issue] and as the tail of the distribution function for this flight [Thompson
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et al., 1999], but it cannot be fingerprinted with tracers. In this case, a more refined model
treatment with a finer grid than used in the present study and with the emission inventory based
on the actual aircraft traffic appears to be the best approach to further analysis of the aircraft
influence.

3.6. Summary of Source Contributions for All SONEX Flights

We have averaged the model-computed NO, mixing ratios attributable to each source over
each SONEX flight, and results for Experiment SGPL are shown in Figure 10a. The average
percentage contribution made by each source is shown in Figure 10b. Aircraft contributions range
from ~6% on the October 28 flight from Shannon to the Azores to ~17% on the November 10
flight to the northwest of Bangor. The model estimates the lowest average NO, for the November
10 flight, with the fossil fuel/soil source only contributing ~120 pptv. The cross-track flights (Oct.
18, Oct. 23, and Nov. 9) did not show particularly enhanced aircraft contributions. This result is
likely due to the fact that we did not have a detailed aircraft emission inventory specific to the
days in question.

Stratospheric contributions ranged from 12% on the November 9 flight in the OTS along
the coast of Newfoundland to 53% on the October 25 flight to the north of Shannon along the
coast of Norway. The November 9 case was the flight most dominated by the lightning source
(at least ~42% and perhaps ~62% or more). Substantial lightning contributions were also found
on the flights of 13, 23, and 28 October and 3 November.

Source contributions averaged over all of the SONEX flights are shown at the tops of
Figures 10a (mixing ratios) and 10b (percentages). The fossil fuel/soil source dominated with an

average 40% contribution. Uncertainty exists in this estimate because of the high bias
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(particularly during the first several tlights) that may be due to not removing NO, episodically in
precipitation. If this is true, the contribution from fossil fuel/soil may be lower and the other
sources proportionally higher. The overall aircraft source contribution was estimated at 12%,
substantially lower than the contributions from the stratosphere and lightning (26% and 20%,
respectively). Our estimate of the aircraft contribution is similar to that reported by Fried! er al.
[1997] using four different CTMs. These models estimated the zonal mean contribution of aircraft
to total NO, in the upper troposphere at northern midlatitudes is about 10% in summer and 15%
in winter.

Thompson et al. [1999] assigned likely NO, sources on the basis of clustering of subsets
of flights based on prgbability distributions of NO, and other tracer mixing ratios. How do the
CTM-based budgets compare? We look at this in terms of the budget as a whole (summarized
in Figure 10b) and in terms of selected individual flights. In order to be consistent with Thompson
et al. [1999] we will only consider NO, with a non-stratospheric source. Thompson et al. [1999]
assigned 15% of air parcels sampled during SONEX as stratospheric, based on a criterion of ozone
> 100 ppbv. We assigned .26% of parcels as stratospheric based on the CTM labeling. Of upper
tropospheric air parcels on all SONEX flights, Thompson et al. [1999] use tracer ratios to infer
that ~40% of NO, has not reached a statistically predominant mixing ratio characteristic of
background air. This fraction is presumed due to relatively fresh NO, emissions from aircraft,
lightning and recent convective transport.r The total NO, budget in Figure 10b, if only non-
stratospheric sources are considered, consists of ~42% aircraft plus lightning, similar to the tracer
and statistical analysis of Thompson et al. [1999].

How do individual cases compare? Take for example, the continental mud-latitude category
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of Thompson et al. [1999], which is used to describe flights with the most polluted and aged air
parcels (NO, mean mixing ratio close to the most probable mixing ratio and low NO/NO,). These
are 28 and 31 October 1997 and 5, 10, and 12 Nove'mber 1997. From Figure 10b, it can be seen
that ~55% of the non-stratospheric NO, from these flights is from fossil fuel/soil sources, as
expected from continental mid-latitude sources. For these cases, approximately 19% of the CTM-
labeled tropospheric NO, is from aircraft, a significant fraction. This is a conclusion that cannot
be made from consideration of the observations alone. Consider the lightning-dominated flights
identified in. Thompson et al. [1999]: 13 and 29 October 1997, 3 and 9 November 1997. Our
labeled CTM study suggests that ~37% of non-stratospheric N O, derives from lightning averaged
over all of these cases except 29 October, for which lightning NO, accounts for ~24% and the
fossil fuel/soil source is ~53%. The difference between the October 29™ and November 9% flights
is not apparent from the NO, PDFs (probability distribution functions) for those flights
[Thompson et al.; 1999] . The PDFs are nearly identical with each showing a peak at ~170 pptv
and a relatively large tail extending beyond 1500 pptv. Reactive nitrogen on the November 9%
flight appears to be predominantly from lightning along with a mixture of marine and
anthropogenic signatures in convection [Pickering et al., this issue; Snow et al., this issue].
Lightning network and satellite cloud images show areas in and south of the 9 November sampling
region to have intense convective activity.

The five SONEX flights (non-stratospheric portions) between 135 and 25 October 1997 were
classified by Thompson et al. [1999] as two with dedicated cross-track sampling and three with
subtropical origins. All of them are rather similar in NO, PDFs, and have a strongly peaked CO

mixing ratio between 60-70 ppbv, which is 10-30 ppbv lower in CO than the more polluted, mid-
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latitude-influenced air parcels. The subtropical designation for the 13, 20, and 25 October flights
would be consistent with the 20-25% lightning NO, source that appears in Figure 10b because
trajectory-based convective exposure model products [Thompson et al., this issue; Pfister et al.,
this issue] show these flights to be influenced by convection/lightning sources over the Gulf of

Mexico and Caribbean regions.

4. Discussion

4.1. Representativeness

How representative of the NAFC are the percent contributions discussed in section 3.6?
The percent contributions of each source‘ term along the SONEX flight paths are shown for
experiment SGOL in column 1 of Table 5. The SONEX flight paths were not always within the
NAFC (defined here to be 0°-70°W; 45°-60°N). The percent contributions for flights that were
at least partially within the NAFC are shown in column 2. The percent contributions after
averaging the model temporally over the length of the SONEX mission (October 13-November
12, 1997) and spatially over the NAFC are sh-own in columns 3-7. The average contributions at
the “mean altitude” of the SONEX flights are shown in column 3, while the contributions at the
sigma layers corresponding to approximately 353, 302, 258, and 221 hPa (a pressure range that
included 84% of the measurements (see “weighting” row in Table 6) are shown in columns 4-7,
respectively.

The relative importance of the stratospheric source to the upper tropospheric NO, budget
increases from 22 to 32% when the averaging area is changed from the SONEX flight paths to

the NAFC. The rather large difference is not entirely surprising since regions where stratospheric
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influence was expected to be large were often avoided if possible when planning SONEX flight
paths. The relative role of the stratosphere is also very sensitive to the altitude of the flight paths.
Model-calculated estimates of the relative importance of stratospheric NO, increased from 23 to
53% when the sampling altitude was changed from 353 to 221 hPa.

The increase in stratospheric NO, when considering the entire NAFC region is balanced
by a fairly large decrease in the relative importance of Iig?tning emissions (19 to 14%), a small
decrease in the relative importance of fossil fuel/soil sources (44 to 42%), and a fairly sizeable
(at least on a percentage basis (12 to 10%)) change in the relative importance of aircraft
emissions. The decrease in the role of aircraft emissions is partially due to the fact that the goal
of several of the flights was to characterize the air in the OTS after the traffic peaks. The relative
importance of aircraft emissions increases slightly with decreasing pressure in the upper
troposphere when averaging over the NAFC.

Therefore, conclusions about the NO, budget in the NAFC based only on measurements
from the SONEX flights will tend to underestimate the importance of the stratospheric source and
overestimate the effect of lightning and to a smaller degree aircraft emissions. ~Thompson et al.
[1999] came to a similar conclusion about the representativeness of the SONEX flight paths.
They found by comparing 1992-1998 PDFs of potential vorticity that air parcels along the
SONEX flight paths during 1997 were more subtropical and less stratospheric than the 1992-1998
average. |
4.2. Performance of lightning algorithm

Price and Rind [1994b] evaluate an algorithm used to parameterize lightning emissions

in the GISS (Goddard Institute for Space Studies) GCM by comparing latitudinal and diurnal
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variations in model-calculated lightning flashes with measurements. We will compare model-
calculated flash rates between 10°-60°N and 120°-60°W with NLDN/LREF flash rates from the
same region that have been adjusted for detection efficiency. Our goal is to illustrate the
uncertainties that remain in both the detection efficiency and the algorithm for parameterizing
lightning emissions.

The cloud—to-groﬁnd flash rates used in these simulations were parameterized using
November 1-9, 1997 GEOS-STRAT mass fluxes at 0.44 sigma between 10°-60°N and 120°-60°W.
The fit was excellent when averaged over the entire region and time period (see Figure 2) with
the model-calculated and NLDN-LRF flash rates equalling 199 and 201 flashes per day,
respectively; however, the fit is not as good when the flash rates are binned by latitude (Figure
1l1a) . The algorithm overpredicts low latitude (10°-25°N) flashes by a factor of 1.75 while
underpredicting mid-latitude flashes by =30%. The bias is probably caused by a combination of
factors. 1) The GEOS-DAS overpredicts deep convection in the tropics and low latitudes and
underpredicts deep convection at higher latitudes especially in the marine storm tracks [Molod
et al., 1996; Allen et al., 1997]. 2) The detection efficiencies for the lightning flash rates outside
the United States that are used to calculate lightning emissions are almost certainly too optimistic
(see section 3.5). The error caused by overestimating the efficiencies increases with distance from
the United States.

The “GEOS-STRAT” and NLDN/LREF flash rates as a function of time of day are plotted
in Figure 11b. The algorithm overpredicts (relative to the adjusted NLDN/LRF flash rates) the
flash rate during the afternoon (18UT) while underpredicting it during the morning (12UT). The

bias is partially caused by our assumption that the detection efficiency is the same during the day
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and at night. Results from a recent field study [Cramer and Cummins, 1998] indicate that the
detection efficiency is much higher at night than during the day. The morning peak in the
adjusted NLDN/LRF flash rates may exist because we have not adjusted for diurnal changes in
detection efficiency. The bias is reduced but still remains when we limit our domain to grid
points over the United States (not shown). This suggests that the bias may also be due to biases
in deep convective activity in the GEOS-STRAT DAS. Specifically, it appears that the GEOS-
STRAT DAS overestimates the intensity of deep convection during the afternoon and
underestimates its intensity during the morning.

4.3. Loss by scavenging

The assumption that the removal of NO, by scavenging/settling is a first order process is
extremely crude and does not allow the conclusions drawn from this study to be as strong as we
would like. Model calculations [Rodhe, 1983; Giorgi and Chameides, 1986] have shown that the
wet-scavenging lifetime of tracers with predominantly surface sources is shorter than the lifetime
of tracers with predominantly stratospheric sources. The difference in lifetimes results from the
fact that wet scavenging is larger in regiofls of net upward motion than in regions of net
downward motion. Therefore, tracers with a net upward flux (ie., tracers with predominantly
surface sources) are preferentially scavenged.

The high-bias in the model is at least partially due to the first order algorithm used to
parameterize wet scavenging in the SG-GCTM. A more realistic scavenging algorithm that
accounts for first-order losses by rainout and washout in large-scale and convective precipitation
events has been added to versions of the Goddard CTM (M. Chin, personal communication, 1998)

and may be used in the future. The loss rate in this algorithm is computed based on the
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algorithms of Giorgi and Chameides [1986] and Balkanski et al. [1993]. These algorithms
require the vertical distribution of precipitation; a field that is not available from the GEOS-
STRAT DAS.  Because of this, the vertical distribution of precipitation is estimated by
normalizing the specific humidity change due to condensation and evaporation by the surface
precipitation rate.

A more realistic scavenging algorithm may not improve this simulation as much as hoped.
Estimates of the November 1997 daily precipitation over eastern North America and the Atlantic
from the GEOS-1 DAS and from the GPCP (Global Precipitation Climatology Project; Huffman
et al., 1997]) are shown in Figures 12a-b. The ratio of GEOS-1 DAS precipitation amounts to
GPCP precipitation amounts is less than 0.4 over portions of the North Atlantic storm track and
more than 2 over portions of the Caribbean (Figure 12c). These biases in the intensity of
convection are consistent with earlier studies [Allen et al., 1997] which showed that the intensity
of deep convection in the GEOS-1 DAS is underestimated along the North Atlantic storm track
and overestimated in the Caribbean.

Precipitation amounts during November 1997 (Figure 12b) along the North Atlantic storm
track were larger than usual (Figure 12d). Therefore, wet scavenging during November 1997 is
likely to have been larger than usual, and the mean lifetimes used in this simulation are likely to
be too large during November. A sensitivity calculation was run with the uniform grid CTM
where the upper tropospheric lifetimes were adjusted by multiplying by the ratio of the mean
November GPCP precipitation to the November 1997 GPCP precipitation. The high-bias was

reduced by a few percent.
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5. Summary

The relative importance of various NO, sources including lightning, aircraft, and surface
emissions on upper tropospheric NO, in the NAFC is illustrated as a first application of the
SG-GCTM. Spatial variations in NO, were well captured especially with the stretched-grid run;
however, model-calculﬁated concentrations were often too high in the upper troposphere. Aircraft
emissions play a relatively minor role in the upper tropospheric NO, budget averaged along
SONEX flight paths (12%); however, the contribution of emissions is as large as =30% during
portions of some flights.

Estimates of the relative importance of aircraft emissions on upper tropospheric NO, and
NO, budgets differ widely. The estimate for NO, obtained in this study (10-12%) is on the lower
end of estimates cited in the introduction. Large differences exist because each investigator
phrased the problem differently (in terms of the geographic region considered, the definition of
the upper troposphere, the choice of NO, or NO,, the definition of the stratospheric contribution,
etc.) and used a different set of tools (CTMs, meteorological fields, lightning algorithms, etc.) to
answer it. Ho;ivever, regardless of how the question is phrased, estimates will continue to vary
widely until uncertainties in stratosphere-troposphere exchange and in the parameterization of
lightning NO, emissions, deep convective mixing, and wet scavenging are reduced.

The lightning algorithm does a reasonably good job; however, the use of observed lightning
emissions significantly improves the simulation on a few occasions, especially November 3, 1997.
Uncertainties in the lightning algorithm remain large but will be reduced as lightning flash data
become available for more time periods and for other areas. Errors will also be reduced when

more accurate estimates of the detection efficiency and the ratio of the energy of intracloud to
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cloud-to-ground flashes become available.

These calculations were performed using a stretched-grid CTM; however, the dynamical
fields used to drive the model were obtained from a coarser uniform grid model. Future
calculations will use driving fields from a stretched-grid data assimilation system. Over the next
year, stretched-grid data are expected to be available for the SONEX (13 October to 12
November 1997), AEROCE (2 April to 3 May, 1996), PRE-STORM (June 1985), MAPS (April
and October 1994), and INDOEX (15 February to 31 March 1999) periods. Stretched-grid
simulations using dynamical fields from a stretched-grid DAS are necessary before the full value
of stretched-grid CTM simulations can be determined.

Appendix

The mixing ratio change due to advection was calculated by modifying Lin and Rood’s
[1996, LR96 hereafter) multidimensional and semi-Lagrangian extension of the PPM [Colella and
Woodward, 1984; Carpenter et al., 1996] for use on a non-uniform grid. The three-dimensional
transport equation can be expressed symbolically as (equation 4.2 of LR96):
q™! =lQ" +F[q"+1/2g(q"] + G[q"+1/2f(q"] +H[q"}} /n"*" (A1)
where q = mixing ratio, T = surface pressure, n = time step index, Q = mq = constituent density,
F(G) = change of quantity in brackets due to flux-form transport from the east-west (north-south)
direction, H = change of quantity in brackets due to flux-form transport from the vertical direction,
f(g) = change of quantity in brackets due to advective-form transport from the east-west (north-
south) direction. An equation for 7 is obtained by setting g=1 in (Al) and integrating from the
top (o =0) to the bottom (o =1) of the vertical 0 domain to obtain (equation 4.3 of LR96):

™= gt +GF[1] + G[1])do (A2)
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The f and g operators are needed to minimize operator splitting errors that arise because
the east-west and north-south convergence terms are calculated sequentially. The f and g operators
must be expressed in their advective form in order to ensure that the constituent continuity
equation reduces to the continuity equation for a spatially uniform q field [LR96]. The operator
«plitting terms represented by f and g are of a higher order than their flux-form counterparts.
Therefore, the splitting terms are calculated using first-order upwind differencing after defining the
velocity field, surface pressure, and mixing ratio at box centers.

The change in the constituent density at grid point i due to “flux-form” east-west, north-

south, or vertical transport can be expressed as (Equation 3.3 of LR96):
Qi(n+1) = Q(n) + [F.,o(n+1/2) - F, ,(n+1/2)//Ax; , (A3)
where F,, (equal to u.,,At m, 0, ) and F,,, (equal to u, ,At T, ,q,.,») are the time-
averaged fluxes across the “left” and “right” edges of grid box i, respectively, and Ax; is the width
of grid box i. Values for the u and v components of the wind and 7 at the “left” edge of grid box
1 (i=1-¥2) are obtained by averaging the values at the centers of grid boxes i-1 and I (see Figure
Al). Vertical velocities at the layer edges are calculated kinematically by integrating the
continuity equation in the vertical from the model top where ¢ = 0 to the desired o layer. The
mixing ratios at the box edges (q,., and q,,,) are approximated using the PPM subject to the
monotonicity constraints of Colella and Woodward [1984] in the horizontal and LR96 in the
vertical.

The approach of LR96 is used to extend the scheme to long time steps (ie., time steps
where the CFL condition is violated in the east-west or north-south directions). The constituent

flux is divided into “integer” and “fractional” parts by dividing the Courant number (C,_,,) into
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tnteger and fractional parts. Mathematically (equation 3.1 of LR96),
Con=K. . +cu (Ad4)
where K, is the integer part of C,,, and c,,, the fractional part. The fractional Courant number,
C..p 1S glven by (equation 3.2 of LR96)

€.y = Mmod(Cy, Kiiip) (AS)

The expression for C,_, is more complicated than in LR96 because ax and ay are not constant.

Mathematically,
C., = (-1-11) +dx;/ Ax, (u,., = 0)
C.,=(@-11) +dx,/ Ax,, (u., < 0) (A6)

The integer part (the term in parentheses) of C, ,, can be interpretéd as the number of complete
grid boxes traveled by a parcel during At assuming a velocity of u,,. It equals zero when the
CFL condition is not violated. The index of the grid box the parcel was located in at the
beginning of the time step (the “departure” grid box) is given by ii. Mathematically, ii is
determined by summing ax; until a value of j is found for which
i
z AXJ > [ui_%iAt, j=i'1, i‘z, ces ,11 (Ul_l/, Z O)
j=i-1
1
2 Ax > fulAt =i, il i (u., < 0) (A7)
J=t
The fractional part of C can be interpreted as the fraction of the departure grid box the parcel
encountered during At. Mathematically, dx; is given by
1+l

dX” = {ui-'/ll At - Z AXJ Ul_% 2 O
j=i-1
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ii-1
dxg = [u,|At- 2 Ax U, <0 (A8)
j=I
The calculation of the Courant number when the CFL condition is violated in the east-west
direction is illustrated for the case where u,,, = 100 m s, ax,;= 100 km, ax,_,= 75 km, ax_,= 50 km,
ond at = 1000s in Figure Al. Solving (A7) for ii we obtain ii = i-2, solving (A8) for dx, we obtain
dx;, = 25 km, and solving (AS) for C.,,, K,,, and c,_, we obtain 1.5, 1, and 0.5, respectively.
The fractional flux is solved for using the PPM as before; however, a different algorithm
is needed to solve for the integer flux because the PPM is unstable for [C| > 1. The “integer” flux
is calculated using a semi-Lagrangian approach. In this case, the constituent density at the box
edges is assumed to be given by a weighted average of the constituent densities in all the boxes
encountered during At. The contributions from the “integer” and “fractional” components of the

flux can be combined to get an estimate for the constituent density at the box edges. This estimate

is used to solve Equation (A3). Mathematically,

ii+l ii+l
Qi12(n+1/2) = [2(Q; Axy) + Qi (n+l/2)dx;) /7 [Z(Axy) + dxyyl
j=i-1 j=i-1
for w4, 2 0, j=i-1, i-2, ... ,1ii+l
ii-1 ii-1
Qi1,2({n+1/2) = [Z(Q] ij) + Qi (n+1/2)dx;;1 7 [Z(AX;) + dxy;l
j=1 j=i
for wu,4 < 0, j=i, i+1, ... ,ii-1 - (A9)

where Q, is calculated using the second-order PPM. The summation terms drop out for ICl < 1.
The Ax, and dx; terms in the numerator and denominator cancel if the grid is uniform.

Analogous expressions are used to calculate the change in constituent density due to north-
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south transport.  An additional complication arises for cross-polar flow when the CFL condition
is violated in the north-south direction. In this case, in order to solve (A9), the constituent density
is needed at fictitious grid points 180° (on the opposite side of the pole) from grid point i. Values
at these fictitious grid points are obtained by interpolation using values at actual grid points on
each side of the fictitious grid points. The need for fictitious grid points does not exist when the
grid is uniform because in that case actual grid points exist that are 180° from grid point i.
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Figure captions:

I. Horizontal grid used for SONEX NO, stretched-grid simulation. Grid spacing is 0.94°(0.75°)
in the east-west (north-south) direction in the high resolution region (100° to 50°W, 25°-50°N) and
stretches to 2.5°(2.0°) in the east-west (north-south) direction on the opposite side of the globe.
Every second grid point is shown with a “+”. The stretched-grid has 248(170) points in the east-
west (north-south) direction.

2. NLDN/LREF Flash rate (flashes in 2.5° x 2.0° grid box min™ ) as a function of GEQS-STRAT
mass flux (kg min' m°) at 0.44 sigma. Sorted flash rates and mass fluxes are shown by a “*",
Fourth order fit to sorted data is shown with a line. Fit obtained using 10° to 60°N, 120° to 60°W
data from November 1-9, 1997.

3. SONEX flight tracks for October 23 (SONEX flight 7), October 28 (SONEX Flight 9), October
29 (SONEX Flight 10), November 3 (SONEX Flight 12), and November 9 (SONEX Flight 14).
The October 28" and November 9" paths are drawn with a thinner line to separate them from the
October 23rd and November 3™ paths, respectively.

4. Model-calculated versus measured NO, (pptv) on October 23, 1997. NO, (pressure) data after
averaging over 60 s are shown by asterisks (a line). Model-calculated NO, is shown for the grid
volume containing the measurement. The value for each 60-s period is obtained by linearly
interpolating model output that is available at 0, 6, 12, and 18 UT. Shading is used to show the
model-calculated contribution from each source term. The total shaded region gives the
contribution from all source terms. Time periods where data are missing are unshaded. (a) Model
output from experiment UGOL. (b) Model output from experiment SGOL.

5. Same as Figure 4 but for October 28, 1997. (a) Model output from experiment SGPL. (b) Model
output from experiment UGOL.

6. Same as Figure 4 but for October 29, 1997. (a) Model output from experiment SGPL. (b) Model
output from experiment UGOL.

7. Model-calculated NO, (ppbv) from lightning as a function of longitude and latitude. Model
output from experiment SGOL is shown after interpolating onto the 250 hPa surface. (a) 12 UT
October 26, 1997; (b) 12 UT October 27, 1997; (c¢) 12 UT October 28, 1997; and (d) 12 UT
October 29, 1997. The aircraft flight track on October 29 is shown with a dark line.

8. Same as Figure 4 but for November 3, 1997. (a) Model output from experiment UGOL. (b)
Model output from experiment SGOL.

9. Same as Figure 4 but for November 9, 1997. Model output from SGPL.

10. Model-calculated contribution to total NO, from each source term (experiment SGPL) on each
flight date. Values obtained by averaging contributions calculated for each 60-s period (see Figure
4 discussion). Total contribution for the SONEX mission obtained by averaging the contributions
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from each flight. (a) Contribution from each source term in pptv (b) Contribution from each
source term in percent.

1. Mean November 1-9, 1997 cloud-to-ground flash rates (total flashes in a six hour period) for
120° to 60W° and 10° to 60°N as a function of latitude (a) and time of day (b). NLDN/LRF flash
rates after adjusting for efficiency using the method described in section 2.2.2 are shown with light
bars. Model-calculated flash rates are shown with dark bars.

12. The daily precipitation rate (mm/day) for November 1997 from the GEOS-1 STRAT DAS (a)
and from the GPCP Version 1a Combined measurements (b). The ratio of (a)/(b) is shown in c.
The unshaded region is where the ratio is between 0.7 and 1.3. The two darkest regions are where
the ratio is less than 0.4 (the darkest region) and between 0.4 and 0.7. The two lightest regions
are where the ratio is greater than 1.3 but less than 2.0 and where it is greater than 2.0 (the lightest
region). The mean (1987-1997) November daily precipitation rate from the GPCP is shown in d.
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Table 1. Sigma (o) layers used for the SONEX NO, simulation. Sigma
is defined as follows: 0 = (pP-D.) / (Pstc~Prop) » Where p is the pressure
at the bottom edge or center of model layer K, p.,, is the pressure
at the model top (1 hPa), and p,.. i1s the surface pressure.

K Oboc edge ocenter K 0'bcu: edge Ocen:er
1 1.000 0.994 14 0 0.258
2 0.988 0.972 15 0.238 0.221
3 0.955 0.930 16 0.203 0.188
4 0.906 0.876 17 0.172 0.158
5 0.846 0.813 18 0.145 0.133
6 0.780 0.746 19 0.122 0.112
7 0.711 0.675 20 0.103 0.095
8 0.640 0.605 21 0.086 0.080
9 0.571 0.537 22 0.073 0.067
10 0.504 0.472 23 0.062 0.057
11 0.440 0.410 24 0.052 0.045
12 0.380 0.353 25 0.038 0.029
13 0.325 0.302 26 0.020 0.010
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Percent of daily aircraft NO emissions within the OTS of

the NAFC that are assumed to occur during each hour as a function of

Table 2.
longitude.
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Table 3. The NO, lifetime for grid points in the boundary layer is
assumed to equal 1.0 days over land, 2.5 days over water, and 4.0
days over ice. The NO, lifetime (days) as a function of pressure
(hPa) and underlying surface (land, water, or ice) for tropospheric
grid points that are not in the boundary layer is determined by
interpolating from the values shown below. The lifetime at grid
points above the tropopause is assumed to be infinite. The final
column (T;./T, ice) 1S the ratio between the NO, lifetime with ice
particle scavenging and settling and the lifetime without those
processes.

Pressure Land Water Ice Tice /Tao ice
1000 1.00 2.50 4.00 1.00

800 3.00 3.75 4.50 1.00

600 5.00 5.00 5.00 1.00

500 7.40 7.40 7.40 0.74

400 13.86 13.86 13.86 0.77

300 30.40 30.40 30.40 0.80

200 41.65 41.65 41.65 0.85

100 54.00 54.00 54.00 0.90
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Table 4. Mean NO, production (Tg N yrt) from each source for October
1- November 14, 1997

Fossil fuel/soil 24.90
Lightning 3.56
Biomass burning 15.75
Aircraft 0.50

N,0 dissociation 0.84
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Table S. Percent contribution of each source term from experiment
SGOL. The average of the percent contributions from each of the 14
flights is shown in column 1 (SONEX,, ). The average of the percent
contributions from the 12 flights at least partially within the NAFC
(October 29 and November 12 are excluded) is shown in column 2
(SONEXysre) -  Only measurements within the NAFC are used to calculate
the percent contributions in column 2. The average of percent
contributions from the model within the entire NAFC is shown 1in
column 3. The percent shown in column three was obtained by summing
the contributions in each layer after weighting each layer by the
percent of the SONEX measurements in the NAFC that were taken in
that layer. The average of the percent contributions for the 0.353,
0.302, 0.259, and 0.221 0 layers are shown 1in columns 4-7. The
weighting given to each sigma layer when calculating the value in
column 3 is shown in the “Weighting” row.

Region SONEX,,, SONEXyare NAFC
Fossil/soil 40 44 42

Lightning 20 19 14

Biomass 3 3 2

Aircraft 11 12 10
Stratosphere 26 22 32

Weighting NA NA NA

Sigma layer 0.353 0.302 0.259 0.221
Fossil/soil 50 41 30 22
Lightning 16 15 14 12
Biomass 2 2 2 2
Ailrcraft 9 11 12 12
Stratosphere 23 31 42 53

Weighting 0.24 0.19 0.29 0.12
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